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Abstract

Convective heat transfer of laminar, single-phase flow
in rough microtubes is studied. Wall roughness and slope
are assumed to possess Gaussian, isotropic distributions.
Fractal concepts are used to model the rough microtube.
It is shown that due to the existence of wall roughness,
both cross-sectional and inside surface areas are increased.
A new concept is defined as a figure of merit for assessing
thermal performance of rough microtubes. As a result of
increasing roughness, an enhancement is observed in the
thermal performance of microtubes. The present model can
be extended to analyze other geometries such as rectangular
and trapezoidal microchannels.

Nomenclature

A, = cross-sectional area, m?

A = surface area, m?

a = mean radius of rough microtube, m
Cp = fluid specific heat, kJ/kgK

D = microtube diameter, m

h = convection heat transfer coefficient, W/m?K
k = fluid thermal conductivity, W/mK
L = sampling length, m

Mmaps = mean absolute surface slope, [—]

m = mass flow rate, kg/s

Nu = Nusselt number = hD/k

Qu = wall heat flux, W/m?

r = local microtube radius, m
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T = temperature, K

uw = fluid velocity, m/s

x = fluid flow direction

Greek

€ = relative roughness, o/a

n = non-dimensional radial location = r/a
¢ = non-dimensional length, z/L

0 = surface angle, rad

0 = non-dimensional temperature

P = fluid density, kg/m?

o = roughness standard deviation, m
om = slope standard deviation, rad
Subscripts

0 = smooth microtube

# = in angular direction

m = mean value

x = in longitudinal direction

1 INTRODUCTION

The flow of liquids through microtubes and microchan-
nels is becoming increasingly important as the size of me-
chanical devices and biological and chemical sensors contin-
ues to shrink. This has led to a series of recent investigations
focused on measuring pressure drop and heat transfer rates
through microtubes, see survey articles [1; 2; 3].

Microchannels also present a great potential for micro-
electronics cooling and fuel cell technologies. They can
be integrated directly within the heat generating compo-
nent; thus the thermal contact resistance at the interface
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Figure 1. CROSS-SECTION OF A ROUGH MICROTUBE, FROM REF. [6]

of a heat-generating component and heat sink is elimi-
nated. This feature leads to lower substrate temperatures
and smaller temperature gradients [4].

As the diameter of (micro-) tubes decreases the surface
to volume ratio, which is equal to 2/r, increases rapidly.
Consequently, the surface phenomena- including the effect
of wall roughness, see Fig. 1, become more significant. The
effects of roughness on pressure drop of microtubes have
been experimentally investigated by several researchers, to
name a few see Li et al. [5; 6; 7]. These studies consistently
show an increase in the friction factor due to the surface
roughness when compared with the classical, smooth theory.
The same authors [8] developed a novel analytical model
that predicts the trends of empirically determined friction
factors for rough microtubes.

The effects of surface roughness on single-phase con-
vective heat transfer of microchannels have also been ex-
perimentally investigated by some researchers. However,
unlike the pressure drop data, the reported trends in the
heat transfer data are rather inconsistent.

Celata et al. [9] performed heat transfer experiments in
capillary tubes with R114 and water with tube diameters
ranging from 130 - 290 pum. Microtubes were heated by di-
rect condensation on the outer surface of the tube (isother-
mal boundary condition was assumed). Celata et al. com-
pared their experimental results with the correlations de-
veloped for conventional laminar and turbulent flows. They
concluded that the conventional theories were not adequate
for predicting heat transfer in microtubes [9]. Kandlikar et
al. [10] studied the effect of surface roughness on the lo-
cal Nusselt number of rough microtubes of radii 1.032 and
0.62 mm. Kandlikar et al. reported an increase in the heat
transfer for the microtubes with higher relative roughness
€ ~ 0.01. The roughness of the inside tube surface was cre-
ated by etching with an acid solution [10]. Gao et al. [11]
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Figure 2. MICROTUBE ELEMENT
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investigated the single-phase heat transfer in two dimen-
sional microchannels. They designed an experimental rig
in such a manner that the height of the test microchannel
could be changed from 1 to 0.1 mm. Their measured local
Nusselt numbers were in good agreement with the conven-
tional theories for larger channel heights. However, at lower
values of the channel heights (< 0.4 mm), they encountered
a significant decrease in the Nusselt number [11].

As briefly reviewed above, the published data show a
significant scatter which may be a result of various condi-
tions used in experiments, and most likely a direct result of
the difficulties of thermal measurements at micron levels.

There is a need for a better understanding of the ef-
fect of wall roughness on heat transfer characteristics in
microchannels and microtubes. No physical model exists in
the literature that accounts for the wall roughness effects.
The goal of this paper is to develop a predictive model for
the convective heat transfer of laminar, single-phase flows
in rough microtubes.

2 THERMAL PERFORMANCE OF MICROTUBES
The assumptions of the present model are summarized
as:

e the fluid flow is laminar. The fluid is forced to move by a
pressure gradient applied to the ends of the microtubes,
i.e. pressure-driven flow.

e the fluid is Newtonian and the microtube cross-section
is circular.

e the microtube walls are rough; the roughness is assumed
to be Gaussian, i.e., isotropic. Also, there are no macro
deviations or waviness inside the microtubes.

e rarefaction, compressibility, and slip-on-wall effects are
negligible.

e the entire inside area of the rough microtube is wetted.

e fluid properties are constant.
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Some researchers have reported that the transition from
laminar to turbulent flow regimes starts at lower Reynolds
numbers in microchannels. However, this early transition
has not been observed by Judy et al. [6]. Also Obot [12]
presented a critical review of published data and concluded
that there is hardly any evidence to support the occur-
rence of transition of turbulence in smooth microchannels
for Re < 1000. Therefore, the focus of this study is on the
laminar flow regime.

A new parameter (dT,,/dx), change in the fluid mean
temperature over the tube length, is defined as a figure of
merit to assess the thermal performance of randomly rough
microtubes.

Consider a microchannel of inside surface area dA,
cross-sectional area A., and length dx where the mean ve-
locity of the fluid is w,,, as shown in Fig. 2. The mean
temperatures at the inlet and the exit of the element are
T,; and T;, , also a uniform wall heat flux ¢, can be as-
sumed for an element. Applying an energy balance for an
element dzx, one can write

pcp Ac U dTy, = gy dA (1)

Equation (1) is general, i.e., it is not limited to any specific
thermal boundary condition. It is also valid for both devel-
oping and fully-developed regions. The mean velocity u,,
and the mean temperature T, are defined as [13]:

J4 pudA.
Uy = ———
pAc
o S, puc,TdA,
" mey,

where v is the mass flow rate. Equation (1) can be re-

arranged as
dl,  2q, A” %)
dr — pcpa upAf (
where A* = dA/dAy, AF = A./Ac0, dAg = 2madz, and
Aco = ma®. Subscript 0 denotes the smooth microtube and
a is the mean statistical average of the local radius over the
entire microtube.

In the following sections, relationships for the surface
area and cross-sectional area of rough microtubes are de-
rived. Implementing the same approach, the present model
can be extended to other geometries such as rectangular and
trapezoidal microchannels. A brief introduction on rough-
ness is presented in the next section.

3 ROUGHNESS
Roughness or surface texture can be thought of as the
surface deviation from its nominal topography. The term

Gaussian is used to describe a surface where its asperities
are isotropic and randomly distributed over the surface.

Five types of instruments are currently available for
measuring the surface topography [14]: i) stylus-type sur-
face profilometer, ii) optical (white-light interference) mea-
surements, iii) Scanning Electron Microscope (SEM), iv)
Atomic Force Microscope (AFM), and v) Scanning Tunnel-
ing Microscope (STM). Among these, the first two instru-
ments are usually used for macro-to-macro asperity mea-
surements, whereas the others may be used for micro or
nanometric measurements. Surface texture is most com-
monly measured by a profilometer, which draws a stylus
over a sample length of the surface. A datum or center-
line is established by finding the straight line, or circular
arc in the case of round components, from which the mean
square deviation is a minimum. Some of the rough surface
characteristics are:

1 /L
Razz/o |z (x)] dx (3)

where L is the sampling length in the x direction and z(z) is
the measured value of the surface heights along this length.
When the surface is Gaussian, the standard deviation o is
identical to the RMS value [15], R,

L
o=R,= %/0 22 (z) dx (4)

For a Gaussian surface, Ling [16] showed that the average
and RMS values are related as, R, = \/7/2R, = 1.25R,.
Similarly, the absolute average and RMS asperity slopes,
Mabs and o, respectively, can be determined across the
sampling length from the following:

L
Mabs = _/ dx (5)
0

ey

Mikic and Rohsenow [17] showed that for Gaussian surfaces
the relationship between the average and RMS values of the
asperity slopes is 0., =~ 1.25mgps-

dZ()

4 ROUGH MICROTUBES

Consider a rough microtube with the mean radius a
and length dx as shown schematically in Fig. 3. The wall
roughness of the microtube is assumed to posses a Gaussian
distribution in the angular direction. Owing to the random
nature of the wall roughness, an exact value of the local

Copyright (© 2005 by ASME



Figure 3. CROSS-SECTION OF A MICROTUBE: WALL ROUGHNESS
AND GAUSSIAN DISTRIBUTION

radius, 7, can not be specified. Instead, probabilities of
occurring different radii should be computed. A random
variable, p, is used to represent the deviations of the local
radius, 7, in the angular direction, Fig. 3. The standard
deviation of p is the wall roughness oy and has the following
Gaussian distribution:

1 p? 6
o0 = e (77 o
The local radius can vary over a wide range of values from
much larger to much smaller radii than the mean radius a,
valleys and hills in the figure, with the Gaussian probability
distribution shown in Eq. (6). The microtube wall also
has roughness in the longitudinal direction x, see Fig. 4.
The variations of the local radius of the microtube, r, in
the longitudinal direction is presented by another random
variable ¢, with the same Gaussian distribution as in the
angular direction.

¢(q) = 21% exp (—%) (7)

The local radius of the microtube can be written as
r=a+p+tgq (8)

where a is the mean statistical value of the local radius,
r, over the cross-sections over the entire length, dz, of the
microtube.

To better understand Eq. (8), consider cross-sections of
a rough microtube at different longitudinal locations, Fig.
4. These cross-sections have different mean radii where the
probability of these radii occurring can be determined from
Eq. (7), a + q. Meanwhile, the actual radius at each cross-
section varies around the mean radius, a + ¢, in the angular
direction (variations of p) with the probability distribution
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Figure 4. LONGITUDINAL CROSS-SECTION OF RANDOM ROUGH MI-
CROTUBE

described in Eq. (6). Therefore, the local radius of a micro-
tube, r, is a function of both random variables p and ¢, i.e.
r = r(p,q). We assume that the local radius is the super-
position of the two random variables, as shown in Eq. (8).
Note that the variables p and ¢ are independent. For argu-
ment sake, consider an imaginary case where a microtube
has roughness only in the angular direction; thus one can
write, 7 = r(p). As a result, an average of these variables
[r=a+ (p+ q)/2] is not a correct radius.

In the general case, the standard deviations oy and o,
might be different. However, in this study, we assume an
isotropic roughness, i.e., 09 = 0, = 0.

4.1 Cross-Sectional Area, A,

The cross-sectional area of a rough microtube is calcu-
lated from, A, = 7r?. Using Eq. (8), it can be written

+oo +oo
Aczw/_ /_ (a+p+0)’ o) é(@)dpdg  (9)

Equation (9) considers the probabilities of all values of ra-
dius, 7, occurring according to the Gaussian distribution.
It should be noted that it is mathematically possible for
the variables p and ¢ to have values ranging from —oo to
+00, see Egs. (6) and (7). However, the probability of oc-
curring much larger/ smaller radii than the mean radius, a,
are quite small.

After changing variables and simplifying, Eq. (9) be-
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comes
* 1 oo e 2 —wu?/2 —v?)2
AC:2— (I+eu+tev) e /e /“du dv
TJ-oo J—co
(10)
where € is the relative surface roughness
€= (11)

a
Note that the relative roughness, €, is defined as the RMS
surface roughness over the radius of the microtube. Equa-

tion (10) calculates an effective cross-sectional area for
rough microtubes. After solving the integral, one finds

A
Af =% =142 12
°= Ao + 2 (12)

As expected, the effect of surface roughness is to increase
the cross-sectional area of a rough tube. Notice that at the
limit where roughness goes to zero € — 0 (smooth surface),
Al — 1

4.2 Surface Area, A

Surface area increases, compared with the nominal
(projected) area, as roughness is increased. This enhance-
ment depends on the process that created the surface and
the properties of the surface material.

A unique property of random rough surfaces is that if a
surface is repeatedly magnified, increasing details of rough-
ness are observed right down to nanoscale. According to
Majumdar and Tien [18], the roughness at all magnifica-
tions appear quite similar. Microscopic observations have
shown that engineering surfaces can be characterized by
fractals from the nanometer to the millimeter scale [18; 19].
A fractal is a geometrical shape or motif made up of identi-
cal parts which are in turn identical to the overall pattern.
The term fractal was coined by Benoit Mandelbrot [20] to
describe a complex geometrical object that has a high de-
gree of self-similarity and a fractional dimension. Figure 5
shows an example of fractal geometries of similar equilat-
eral triangles built on different scales with a side angle of
where n denotes the number of scales.

Mathematically, fractal surfaces are i) continuous, ii)
statistically self-similar, and iii) non-differentiable. The
non-differentiability arises from the fact that a tangent
plane cannot be drawn at any point on the surface since
more and more details of roughness will appear at that
point. Moreover, fractal dimensions are non-integers which
makes the direct implementation of the fractal theory rather
complex.

With the fractal concept, a new model is proposed for
estimating the real surface area of random rough surfaces.

n = 0 (projected line)

Ao

Figure 5. FRACTAL GEOMETRIES ARE SIMILIAR AT DIFFERENT
SCALES
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Figure 6. MODELED ROUGH SURFACE: CONICAL ASPERITIES AT DIF-
FERTENT LEVELS

The general shape of surface asperities is assumed to be a
cone. Each cone (asperity) is covered with a smaller-size set
of cones (another roughness level). By adding several levels
of roughness, a fractal-type model of rough surfaces is built.
As schematically shown in Fig. 6, the height and base radius
of cones are different depending on the roughness level. To
maintain a self-similarity, the side angle 6 is assumed to
be the same for all levels of roughness. It should be noted
that the modeled rough surface covers both valleys and hills
on a rough surface since concave cone (presenting hills) and
convex cone (presenting valleys) have identical surface area.

The lateral surface area of the first cone is, Ag =
7 (ho/m)* VI + m?2 where m = tanf. The projected area
(the base area) is Ap o =7 (ho/m)?, thus the enhancement
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of surface area due to the first level of roughness is:

A
Ay ==L =\/1+m? (13)

AILO

The second set of cones are of base radius 1 and of height
hy with the same side angle 6. The lateral area of each
of the second level cones is, dA; = = (h1/m)* V1 + m?2,
and the projected area for each second-level cone is,
dA,1 = m(hy/m)?. It is interesting to see that the ratio
of dA;/dA, 1 = V1 + m? is the same as for the first level.
Assuming the surface area of the first cone is completely
covered with cones, the number of the second level cones
can be found:

Ny = Ao _(@)QW (14)

T dA,;  \ Iy

The real surface area with two roughness levels is

A
Ay = Ag + Ny dA, ( ad _ 1> (15)

After substitution and simplification, one finds that A} =
A1/Ay = V1+ m?. Following the same steps, it can be

shown that 4
A"—“ =1+ m? (16)
n

Therefore, the increase in real surface area due to roughness
where n scales (levels) of roughness is considered becomes:
n/2

A= )

p (17)

A relationship similar to Eq. (17) can be derived for
the length ratio {l* =1/lp=(1 +m2)n/2} of the one-
dimensional fractal geometries shown in Fig. 5. This is
in agreement with the isotropic roughness assumption, i.e.,
each trace of roughness measurement contains all the rough-
ness characteristics of a Gaussian surface.

The surface slope m is also a random parameter with a

Gaussian distribution:
1 m?2
exp | ——— 18
V2rom, p< 2072n> (18)

where o,, is the surface slope standard deviation, see Eq.
(5). To account for this variation of surface slope, Eq. (17)
is weighted with the Gaussian distribution. Thus, the sta-
tistical effective real surface area can be found from:

+o0o
:Aioz/_ (1+m2)"*6(m) dm  (19)

¢ (m) =

A*

Equation (19) should be solved numerically. Figure 7 and
Table 1 present the effect of roughness on real surface area

10°
i G, =0.2
10"
< 5,=0.1
<“ |
I
P =0.05
< 10° -
g G, = 0.01/
10-1 TR T N TR SR RO S TR IS ST N ST N
25 50 75 100

n, Number of Roughness Levels

Figure 7. SURFACE AREA AS SCALE NUMBER AND SURFACE SLOPE
ARE VARIED

A* for four different levels of surface slope standard devi-
ations o, = 0.01, 0.05, 0.1, and 0.2. As expected, by in-
creasing the number of roughness levels n, the real surface
area is increased (without a limit when n — oo). Moreover,
the increase in real area is higher for surfaces with larger
surface slopes.

Table 1. INCREASE IN SURFACE AREA AS SCALE NUMBER AND
SURFACE SLOPE ARE VARIED

om= 001 005 01 02
A* = AJA,

n
1 {1.0001 1.0013 1.0050 1.0190
2 11.0001 1.0025 1.0100 1.0400
3 11.0002 1.0037 1.0150 1.0617
4 (1.0002 1.0050 1.0200 1.0850
5 |1.0003 1.0063 1.0260 1.1093
6 11.0003 1.0076 1.0310 1.1354
10 {1.0005 1.0127 1.0531 1.2590
12 |1.0006 1.0153 1.0648 1.3358
%(5) 1.0008 1.0190 1.0830 1.4775
25

30

40

50

1.0010 1.0260 1.1155 1.8243
1.0013 1.0330 1.1511 2.4410
1.0015 1.0396 1.1901 3.7161
1.0020 1.0540 1.2812 16.860
1.0025 1.0688 1.3956 258.59

Notice that at the limit where roughness goes to zero
e — 0 (smooth surface), A* — 1. The number of rough-
ness levels, n, should be estimated when compared against
experimental data. Also it can be seen that the surface en-
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Figure 8. EFFECT OF ROUGHNESS ON THERMAL PERFORMANCE OF
A MICROTUBE

hancement A* is not sensitive to the number of roughness
levels, n.

4.3 Effect of Roughness on Thermal Performance
Substituting Egs. (12) and (19) into Eq. (1), the ther-
mal performance becomes:

L 2qw A
dz  p cpa up (1+ €2)

(20)

Assuming a constant wall heat flux ¢, and a constant mean
velocity u,, as roughness is varied, the effect of roughness
on thermal performance of microtubes can be determined.
Figure 8 illustrates the effect of roughness on the thermal
performance of a microtube where:

dT,,\*  (dT,/dx)  A*
(%) ~ (dT,/dr), 1+ 2€ (21)

Figure 8 shows an increase in the thermal performance
due to introducing wall roughness. Recent advances in
MEMS fabrication techniques allow several manufactur-
ing methods that can be utilized to fabricate periodic sur-
faces. The present model can be used to predict an opti-
mize design for the thermal performance of periodic micro-
tubes/microchannels with or without roughness. It should
be noted that as wall roughness increases, the pressure drop
in microtubes also increases, see [8] for more detail. There-
fore, both pressure drop and thermal performance should
be considered in the optimizing procedure when designing
microtubes.

To estimate the surface slope, the following empirical
relationship is used [21]:

Maps = 0.076 o052 (22)

The uncertainty of the above correlation is high, and use of
this correlation is justifiable only where the surface slope is
not reported and/or a rough estimation of mgps is needed
[22]. Also, an arbitrary value for the number of roughness
levels n is considered.

5 ROUGHNESS AND NUSSELT NUMBER
Consider a fluid passing through a microtube where its
temperature is changing as a result of heat transfer with the
microtube wall. From Fourier’s law:
oT
= —k— 23
G B (23)

wall

Defining a non-dimensional temperature [13]:

T, —T

0 =
=T -7,

(24)
Also 7 = r/a. Using the definition of the convective heat
transfer coefficient, g, = h (Ts — Trn,), Eq. (23) becomes:
Nu= 2 %z (25)
877 wall
where Nu = hD/k is the local Nusselt number and D = 2a.
As shown in Eq. (25), Nusselt number is twice the derivative
of the non-dimensional temperature profile at the wall, see
Fig. 9.

The wall roughness is assumed to be small compared
to the tube radius. It is also assumed that the fluid flow
remains laminar. This assumption is justifiable for low
Reynolds numbers where inertial forces are small relative
to viscous forces. Therefore, the non-dimensional tempera-
ture profiles remain unchanged as roughness is introduced.
Thus, Nusselt number is not a function of wall roughness,
see Eq. (25). In other words, since the slope of the non-
dimensional temperature profile at the wall is independent
of the tube local radius, Nusselt number will not change
as the local radius varies due to roughness, see Fig. 9.
This amounts to neglecting the possible effects of contrac-
tion/expansion of the fluid flow on heat transfer. Since the
surface slopes of random rough surfaces are quit small (in
the order of few degrees), this should not introduce a sig-
nificant error.

Using Eq. (8) a relationship can be found for the con-
vective heat transfer coefficient h

_ kNu [T [ ¢ (p) ¢ (q)
= /_oo /_oo @tprqr (2
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Figure 9. NON-DIMENSIONAL TEMPERATURE PROFILE IS NOT A
FUNCTION OF LOCAL RADIUS

where ¢ (p) and ¢ (q) are defined in Egs. (6) and (7), re-
spectively.

The effect of roughness on the convective heat trans-
fer can be presented as a correction factor with respect to
smooth microtubes:

h +oo +oo e U /2 —v /2
h* = —F—dud 27
ho 27r / 1+e(u+v) wav (27)

where hg = kNu/2a is the convective heat transfer coeffi-
cient for smooth microtubes. Equation (27) is solved nu-
merically and the results are curve-fitted. The following
correlation can be used to find h*:

h 1

W=—=— 28

ho 1—1.38¢l785 (28)
Figure 10 shows the effect of roughness on the convective
heat transfer coefficient. As shown, the effect of roughness
on h is quite small and can be neglected for most applica-
tions.

6 SUMMARY AND CONCLUSIONS

The effect of random, isotropic surface roughness on
convective heat transfer in laminar, single-phase flow in
rough microtubes is studied and a novel analytical model
is developed. A new parameter, change in the fluid mean
temperature over the tube length, is defined as a figure of
merit to assess the thermal performance of randomly rough
microtubes.

The results for cylindrical rough microchannels are pre-
sented; however, the proposed model can be extended to

11

108 f
=106 F
-~ [
< i
11 1.04 |-
x i
< i
102 | h*=1/(1-1.38¢""%)
i hy=kNu/2
1t
e
0 0.05 0.1 0.15 0.2 0.25 0.3
e=ocla

Figure 10. EFFECT OF ROUGHNESS ON CONVECTIVE HEAT TRANS-
FER COEFFICIENT

other geometries such as rectangular and trapezoidal mi-
crochannels. As a result of advances in fabrication tech-
niques of MEMS, many processing techniques can be uti-
lized to fabricate periodic surfaces. The present model can
be implemented to optimize the thermal performance of pe-
riodic surfaces with or without roughness.

Two independent random variables are considered to
account for deviations of the local radius of rough micro-
tubes in the angular and longitudinal directions. The local
radius is assumed to be the superposition of the two random
variables. Relationships are derived for the cross-sectional
area and the convective heat transfer coefficient of randomly
rough microtubes.

Using fractal concepts, a new statistical model is devel-
oped for estimating the real surface area of random rough
surfaces. The general shape of surface asperities is assumed
conical. The following are found through analysis:

e as aresult of roughness, both cross-sectional and surface
area of microtubes are increased

e the thermal performance of microtubes increases by in-
creasing wall roughness. This increase comes at the
expense of a higher pressure drop

e Nusselt number remains unchanged as wall roughness
is introduced

e the convective heat transfer coefficient slightly increases
by increasing wall roughness; however, this increase is
relatively small and may be ignored for most applica-
tions.

A relatively large scatter is observed in the published
heat transfer data. Therefore, the model is not compared
with the data. Performing careful experimental investiga-
tion is highly recommended to validate the present model.
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However, it should be mentioned that designing and con-
ducting such experiments is a great challenge due to the
small size of microtubes. Further, the present model re-
quires a parameter, the roughness scale number n, which
should be estimated from the comparison with experimen-
tal result.
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